- - -~
TR

Y E" .

\‘..AA

[Undamentals (f

‘ ‘
|
| | |
| | 1
| (- ] |
‘
|
|
\ i

TOM NAIH 1] M)VAN

-“ ||

Sanay Mishra



“\ C; ,
A [undamentals f

[OR JE MAIN AND ADVANCED

[ (AU

Sanjay Mishra




Fundamentals of Mathematics

Differential Calculus



This page is intentionally left blank.



Fundamentals of Mathematics

Differential Calculus

Sanjay Mishra

B. Tech.
Indian Institute of Technology,
Varanasi



Copyright © 2016 Pearson India Education Services Pvt. Ltd

Published by Pearson India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128,
formerly known as TutorVista Global Pvt. Ltd, licensee of Pearson Education in South Asia.

No part of this eBook may be used or reproduced in any manner whatsoever without the
publisher’s prior written consent.

This eBook may or may not include all assets that were part of the print version. The publisher
reserves the right to remove any material in this eBook at any time.

ISBN 978-93-325-7026-9
eISBN 978-93-325-7893-7

Head Office: A-8 (A), 7th Floor, Knowledge Boulevard, Sector 62, Noida 201 309,
Uttar Pradesh, India.

Registered Office: 4th Floor, Software Block, Elnet Software City, TS-140, Block 2 &
Rajiv Gandhi Salai, Taramani, Chennai 600 113, Tamil Nadu, India.

Fax: 080-30461003, Phone: 080-30461060

www.pearson.co.in, Email: companysecretary.india@pearson.com



Contents

Preface xi

Acknowledgements  xii

Chapter 1

The Limit of a Function 1.1—1.192

Introduction 1.1

o Archimedes and The Problem of Area: * Neighbourhood of Point ‘a’ * Deleted
Neighbourhood of a Point a * Left Deleted Neighbourhood of ‘a’ * Right Deleted
Neighbourhood of ‘a’ * Meaning of x — a’ (x Tends to a)

Limit of a Function 1.5

o Why Limit of a Function is Needed?

Indeterminate Forms 1.7

o Left Hand Limit of Function * Right Hand Limit of a Function: * Finite Limit at
infinity: * Infinite Limit at a Finite Point: * Infinite Limit at Infinity:

Algebra of Limits 1.24

Infinitesimal Quantity 1.27

Properties of Infinitesimal: 1.27

o List of Equivalent Infinitesimals

Sandwich Theorem and Standard Results on Limits 1.31

Standard Results on Limits 1.31

Evaluation of Limits 1.45

e [. By Using Factorization: * 2. By Rationalization : * 3. By Using
Substitution: By Using Standard Limits:

Application of Standard limits 1.54

o Transformations: 1Y

Application of Standard Limits 1im(1+;) =e or lim(l +x)"=e 156

X—>©

Application of Standard Limits 1.58

Application of Standard Limit lim R )
Xx=a x —_ a

Evaluation of Limit Using Expansions 1.65

Limit at Infinity 1.69

Using L-Hospital Rule 1.71

Evaluation of Limits by using Logarithm 1.75

e Evaluation of Limit lim( f (x))g(x) When it is of the form (1)*  Evaluat of Limit
lil})i+ ( f (x))g(x) When it is of the form (0)° » Evaluate of Limit lim( f (x))g(x) When

it is of the Form ()’




vi » Contents

Chapter 2

Leibinitiz Rules:  1.78

Limit of Summmation of Series Using Definite Integral 1.79

Method to Evaluate the Limit Using Definite Integral 1.79

Geometrical Application: 1.80

Asymptotes 1.94

o Horizontal Asymptote (Asymptotes Parallel to x-axis): * Algorithm

Procedure to Find Vertical Asymptote 1.97

Oblique Asymptotes 1.98

o Procedure to Find Oblique Asymptotes: * Method to Find Oblique Asymptotes for
Algebraic Curves of Any Degree * Asymptote by Expansion * The Position of the
Curve with Respect to an Asymptote

Multiple—Choice Questions 1.105
Tutorial Exercise 1.140

Answer Keys 1.147

Hints and Solutions 1.148

Continuity and Differentiability 2.1—2.216

Continuity 2.1

Introduction 2.1

o Different Situations of Discontinuity at x = a

Continuity of a Function at a Point 2.2

o Mathematical Definition e Geometric Significance

Continuity of an Even and Odd Function 2.4

Discontinuity of a Function fix) atx =a 2.8

o Types of Discontinuity of a Function f{x) atx = a

Pole Discontinuity 2.11

Discontinuity of First and Second Kind 2.12

Algebra of Continuity 2.22

Continuity of a Function on a Set  2.27

o Domain of Continuity of Some Standard Function: e Continuity in an Open Interval
Continuity of a Function on a Closed Interval 2.31

Properties of Continuous Function 2.36

o P (Fermat's Theorem): o P: 2: Intermediate Value Theorem: o P:3 Weierstrass
Theorem (Extreme Value Theorem) o P: 4: Bolzanos Theorem: o P: 5 A
Continuous Functions Whose Domain is Some Closed Interval Must Have its Range
Also a Closed Interval o P: 6 Continuity of Inverse Function e P: 7 If a Function
f(x) is Integrable on [a, b] , then I: f()dt;x € [a, b] is Continuous Function e To
find the range of function using the properties of continuous functions
Differentiability 2.50

Introduction  2.50

o Differentiability at a point e Physical significance o Geometrical significance
Concept of Tangent and its Association with Derivability: 2.53

o Theorem relating continuity and differentiability ® Reasons of non-
differentiability of a function at x = a

Algebra of Differentiability  2.67

o Domain of differentiability



Chapter 3

Domain of Differentiability of Some Standard Functions 2.70

o Differentiability in open and closed interval

Method to Check the Differentiability of a Given Function on a Set or to

Find Domain of Differentiability 2.70

Miscellaneous Results on Differentiability 2.78

Miscellaneous Concepts About Differentiability and Derivative of Function 2.82
o Alternative limit form of the derivative o Another alternative form of
derivative by using centered difference quotient

Differentiability of Parametric Functions 2.85

Derivatives of Higher Orders and Repeatedly Differentiable Functions 2.86
Functional Equation 2.90

o Solution of a functional Equation e Some famous functional equations in two
variable and their corresponding solutions e Jensen's functional equation

o D’Alambert's functional equation

Multiple—Choice Questions 2.104
Tutorial Exercise 2.154

Answer Keys 2.158

Hints and Solutions 2.159

Method of Differentiation

Introductions 3.1

o Derivatives Using First Principle (Ab-initio) Method e Algorithm to Differentiate
One variable w.r.t. Another o Derivatives of Some Standard Functions e Algebra
of differentiation e Addition and subtraction rule o Product Rule e Quotient Rule
Chain Rule 3.22

Differentiation of a Function with Respect to Another Function 3.22

Order of Derivative and Higher Differential Coefficient 3.31

o Rules of Higher Order Derivative

Logarithmic and Exponential Differentiation 3.35

o Algorithm to Find Logarithmic Differentiation

Differentiation of inverse functions 3.43

o Geometrical Interpretation

Implicit Differentiation 3.47

o Shortcut for Implicit Functions

Parametric Differentiation 3.55

Determinant Forms of Differentiation 3.62

Some Standard Substitution 3.67

o Expression Substitution

Successive Differentiation: 3.73

Leibnitz's Theorem for the n™ Derivative of the Product of Two Functions of x  3.75
Formation of Differential Equation  3.77

Multiple—Choice Questions 3.82
Tutorial Exercise 3.108

Answer Keys 3.115

Hints and Solutions 3.116

Contents < vii

3.1—3.158



viii > Contents

Chapter 4

Application of Derivatives I

Rate of Change 4.1

Introduction 4.1

Derivative as the Rate of Change 4.1

o [nstantaneous rate of change of quantities

Application of Derivative as a Rate of Change 4.8

o Velocity and Acceleration:

Application in Two Dimension 4.12

o Area and perimeter of some standard two dimensional figures are listed below
Application in Three Dimension Geometry 4.16

o Area and perimeter of some standard three dimensional figures are listed below
Problems Based on Marginal Costs and Marginal Revenue 4.21
o Working Rule:

Errors and Approximations  4.25

o Types of errors

Approximations 4.28

o Algorithm

Tangents and Normals 4.33

Introduction 4.33

Definition 4.33

o Geometrical Interpretation:

Graphs with Vertical Tangents 4.39

Caution 4.40

Slope of Normal 4.42

Condition for a Given Line to be Tangent to a Curve  4.47
Tangents from an External Point 4.48

Tangents/Normals to Second Degree Curve 4.51

Tangent to Parametric Functions 4.54

Tangents Intersecting the Curve Itself 4.59

Tangent at Origin  4.63

Angles of Intersection of Two Curves 4.66

o Algorithm:

Orthogonal Curves: 4.70

Common Tangents 4.73

o Equation of normal e Number of solutions

Shortest Distance 4.76

Length of Tangent, Sub-Tangent, Normal, Sub-Normal 4.80

o Length of tangent e Length of sub-tangent e Length of normal: e Length of
sub-normal

Multiple—Choice Questions 4.84
Tutorial Exercise 4.103

Answer Keys  4.109

Hints and Solutions 4.111

4.1—4.146



Chapter 5

Contents < ix

Application of Derivatives 11 5.1—5.376

Monotonicity 5.1

Introduction 5.1

Monotonicity 5.1

Monotonicity at a Point 5.1

Test of Monotonicity at a Point 5.9

Non-differentiable but Continuous Functionatx=a 5.10

Non-differentiable and Discontinuous Functionatx=a 5.13

Monotonicity at the End Point of Interval 5.14

Conclusion 5.15

Monotonic Functions 5.17

o Monotonicity over an Interval o Monotonicity of Differentiable Functions in
an Interval e Monotonicity for continuous but non-Differentiable Functions in an
Interval e Monotonicity for discontinuous

functions in an interval

Interval of Monotonicity 5.27

Critical Points 5.27

Conclusion 5.33

Properties of Monotonic Function 5.44

Application of Monotonicity 5.58

Method of Proving Inequality (Using Monotonicity) 5.58
Curvature of Function 5.72

Curvature of a Circle 5.73

If the function is Given in Cartesian Form 5.74

e Conclusion

Sign of Curvature 5.76

o Concave upwards (convex downwards) e Concave downwards (convex upwards)
Hyper critical Point 5.80

Points of Inflextion 5.80

Method to Find the Points of Inflexion of the Curve y =f(x) 5.82
Solving Inequalities Using Curvature  5.83

Jenson’s Functional Equation 5.83

e Discussion e Conclusion

Mean Value Theorem 5.89

Rolle’s and Mean Value Theorem 5.89

® Rolle’s Theorem o Conclusion:

Algebraic Interpretation of Rolle’s Theorem 5.93
Application of Rolle’s Theorem 5.93

Lagrange's Mean Value Theorem 5.99

Physical Significance: 5.100

Alternative form of Lmvt 5.102

Maxima and Minima 5.109

Introduction  5.109

Maxima and Minima 5.109

Relative (Local) Maxima and Minima 5.109



x » Contents

o Necessary and sufficient conditions for local maxima and minima: (For
differentiable functions)

Fermat Theorem 5.113

Conclusion 5.116

Continuous and Non-differentiable Functions 5.118

First Derivative Test (Continuous Functions) 5.122

Saddle Point 5.128

Boundedness 5.130

o Greatest lower bound e Lowest upper bound

Global Maxima and Global Minima 5.130

Caution: 5.131

Algebra of Global Extrema 5.136

Even/Odd Function 5.136

Miscellaneous Method 5.140

Second/Higher order Derivative Test 5.149

Extrema of Parametric Function 5.158

First Derivative Test for Parametric Functions 5.158

Second Derivative Test for Parametric Function 5.159

Darboux Theorem 5.161

Fork Extremum Theorem 5.161

Extrema of Discontinuous Functions 5.164

Maxima and Minima of Functions of Several Variables 5.168
Maximum and Minimum for Discrete Valued Functions 5.169

Area and Perimeter of Some Standard Two Dimensional Figures are Listed Below: 5.175
Area and Perimeter of Some Standard Three Dimensional Figures are Listed Below 5.176
Some Important Cases 5.178

Inscribed Figures 5.180

Excribed Figures 5.184

General Concept (Shortest Distance of a Point from a Curve) 5.193

Multiple—Choice Questions 5.202
Tutorial Exercise 5.259

Answer Keys 5.275

Hints and Solutions 5.277



Preface

If I am asked to choose the most important event in the history of mathematics, I shall definitely mark the simultaneous
development of calculus by two contemporary, eminent mathematicians — Isaac Newton and Gottfried Leibnitz. By
developing calculus, they made mathematics the only language that can describe the physical universe around us. Calculus,
the mathematical analysis of motion and change, was invented by these two great mathematicians in their process of
attempting to answer the fundamental questions about the world around us and the way it operates.

As we say, the Rome was not built in a day, similarly, an event so momentous involved a basic idea too, that was so
profound that an average human can only hope to comprehend it. The essential idea of calculus involving the derivative and
the integrals is one among such ideas, as are the paradoxes of Zeno (500 Bc) and the novel idea of Archimedes (c.a 200 BC).

Calculus has major share in the syllabus of IIT JEE and other competitive examinations. During my high-school
days as an IIT aspirant, and later as a tutor of mathematics, I had always felt the need for a comprehensive textbook
on this subject. This book has been written with the objective of providing a textbook as well as an exercise book
that focuses on problem-solving. I feel this will not only fulfill the need of class XI and class XII students but will
also meet the requirements of advanced-level students who are preparing for various entrance examinations such as
IIT-JEE Mains/Advanced, BIT-SAT, and other state engineering entrance examinations. This book (Fundamental of
Mathematics, Volume-VI) has been designed to give the students a deep insight into topics such as limits, continuity
and differentiability methods of differentiation and application of derivatives in detail. I have observed in my teaching
career that three topics—Ilimits, continuity and differentiability and mean value theorem, are the most challenging but
high scoring topics of mathematics in the competitive exams. One of the reasons why students dread these topics is
because of their non-familiarity with the basic concepts and the lack of good books that spell out the fundamentals
in a student-friendly manner. This book provides a well-arranged content list that will help students and teachers
to access the chapters and sub-topics of their interest conveniently. Each chapter is divided into several topics and
each topic rationalizes its theory with sufficient number of worked-out problems to enable students to imbibe the
concepts and apply them as required. This is followed by a textual exercise of both objective and subjective problems.
Each chapter is replete with solved examples of both objective- and subjective-type questions that entail students to
apply the concepts learnt in the chapter, thus enabling them acquire masters over the newly assimilated ideas. The
tutorial exercise given at the end contains ample multiple-choice problems with single and multiple correct options,
comprehension passage, column-matching problems and numerical integer-type questions to help students hone their
mathematical skills. For teachers, this text will serve as a repository of well-graded problems, arranged topic- and
subtopic-wise, that can be used to set home assignments to their students.

Suggestions for the improvement of this book are welcome and shall be gratefully acknowledged.

Sanjay Mishra
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The Limit of a Function

CHAPTER

m INTRODUCTION

We have studied about the important events that lead to the
development of calculus, famous among these were sun,
moon and earth problem, problem of force (tangent) and
problem on energy (Area) that paved the path for invention
of an amazing mathematical tool presently known as
calculus. The breakthrough in the development of these
concepts was the formulation of a beautiful mathematical
idea called as limit. The story of development of this
concept is too long to be told here but we would definetly
mark some of the events those became the foundation
stone of the concept of limits and continuity.

Zeno: Zeno was a Greek philosopher (Ca 500 BC) of an
extraordinary intellect much ahead of his time primarily
known for his famous paradoxes. He was mainly concerned
with three problems.

(a) Problem of infinitesimals
(b) Problem of infinite
(c) Idea of continuity

Since then, the finest minds of each generation have at-
tempted these problems. The problem of infinitesimal was
solved by weierstrass whereas the solution of other two was
initialed by Dedekind and concluded by ‘cantor’.

Zeno’s Paradoxes: Zeno proposed that in a race be-
tween Achilles (a legendary Greek hero), and a Tortoise if a
head start is given to the tortoise (Slower) as shown in the
figure 1.1. Then it is not possible for Achilles to overtake
the Tortoise. He forwarded following argument to establish
his proposition.

; Achilles ##* Tortoise

T, T, T, T
A0<T>A1T>A2<—>A3 A,
FIGURE 1.1

He said that by the time Achilles occupies the starting
point of Tortoise (4, = T,), the tortoise will have moved
ahead to a new point 7,. When Achilles gets to this next
position 4, = T, the tortoise will move further ahead and
occupy a new point T,. Thus the tortoise, even though
slower than Achilles, keeps moving forward. Although
the distance between Achilles and the tortoise is getting
smaller and smaller, the tortoise will apparently always
be ahead.

By applying commonsense, one can say that Achilles
must overtake the slower tortoise. But it is important to in-
vestigate that, "where is the error in Zeno’s proposition™?
To indicate the error in Zeno’s proposition and of course
to find the truth, one should sum up the infinite number of
finite time intervals and prove that the summation is always
finite. And this discussion shall automatically lead to the
notion of limit.

Let Achilles be at point 4, and Tortoise be at T, and
let d be the distance between Achilles and Tortoise at the
beginning of race i.e., Tortoise is given ahead start of
distance d.

Corresponding Positions of Achilles and Tortoise
Achilles: A, |4, |4, |4, |4,...

0 1 2

Tortoise: T T, |T.

0 1 2 3 4 "




1.2 » The Limit of a Function

Let v, and v, be the speed of Achilles and Tortoise
respectively. Therefore the time taken by Achilles to reach

. d . .
at point 7, = £, = — . Now after time ¢, when Achilles reach

a

at T' = A4, the Tortoise would have reached at some other

. . . d
point 7' at adistance d, from T givenby d, =v, . ¢, = v,.v— .

a

Now time taken by Achilles to go from 7 to T’ is given by

dv . . .
t, = — = —-. Intime ¢, when Achilles reach at T, tortoise
v, v

would have reached at some other point 7, traveling a

2
t

distance d, = v,.t; =—;-. Now time taken by Achilles to
a
. o d, dv .
reach at point 7, is given by #, =—=—-. This process
%

a a
would go on similarly infinite number of times. Thus sum
of the times taken by Achilles to reach at new position of
tortoise at every stage is equal to #, +# +£, +1, +.....

d 2 3
=—{1+(3J+(3J +(£J Fos }
va va va va
d 2 3 v,
=—{1+r+r +r +....}; where r =-L1<1 as
va vﬂ

v, < v, . Thus the above series is a decreasing infinite
geometric progression and hence the sum converges to

i( 1 )_ d _ d
v,\1-r) v,A-r) (,-v)

time interval.

which is definitely a finite

Thus even if infinite number of processes of catching
the tortoise by Achilles have been taken the sum of time
taken by Achilles would be finite and hence definitely after
a certain stage Achilles would over take the tortoise. Hence
the Zeno’s assumption that Achilles would never catch the
tortoise when given a head start was wrong.

Similarly we can understand the meaning of “ap-
proaching a real number on real number line.”

ILLUSTRATION 1:

SOLUTION:

Imagine a child C| has a cake weighing 1 kg. He divides it in two equal parts, keeping one part
with him, gives 2™ part to his friend C,. He further divides his portion in two equal parts and
gives one equal part to C, and go on continuously doing so. Show that at the end complete cake
shall get transferred to C,.

It is very clear that C, gets %kg cake in step 1, %kg cake in step 2 and %kg cake he receives

from C, in step 3 and the process continue indefinitely. Consequently, the share of C, goes on
increasing whereas cake held by C, continues decreasing and approaches zero. At the end of
steps,

Amount of cake with C, = l+%+l+.... upto n terms (in a GP)

! [1 ( ! jnJ ’ ! T f ﬁ
51115 ; B R | R
" l—l 2 L .|
2 ystep-1fystep-2
n fod fa E
Clearly when n — oo , (%) -0 C,~> L':dk‘ @«L‘;ijLE =%
=4 -1 = —
" FIGURE 1.2

In mathematical language we say that as n increases and approaches to oo, the amount of cake
transformed to C, = lim(4,) =1lkg

This is the basic idea and important thing is to remember, however large the value of n be the
whole cake (1 kg) can never reach to C,. This can be more clearly understood by the figure 1.2.
You become more clear to see the given figure.

J
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ILLUSTRATION 2: The sequence

SOLUTION:

this idea:
L=lim——
ro2 4]

123 1,000 1,001

can be described by writing a general term " where n = 1,

2, 3,4, ... Can you guess the limit, L, of this sequence?
The limit is an important idea in calculus, and we discuss this concept extensively later in

this chapter. We will say that L is the number that the sequence with general term Ll tends

towards as n becomes large and larger without bound. We will define a notation to summarize

As you consider larger and larger values for », you find a sequence of fractions:
9,999,999

~

n+1

n+

.... therefore,

¢

2°3°47771,001°1,002 710,000,000

it is reasonable to guess that the sequence of fractions is approaching the number 1. )

Archimedes and The Problem of Area

The Egyptians were the first to find area of circles over
as early as 3000 B.C., but Greek philosopher Archimedes
first illustrated how to derive the formula for area of circle
(A = mtr?) by applying an infinite limiting process, inscrib-
ing regular polygons inside circle and increasing number
of sides to infinity. He called his method as “Method of
exhaustion”.

Considering 4, be area of n sided regular polygon in-
scribed in circle of radius 'r' as shown in diagrams and con-
clude that the square of Areas 4,, 4,, 4, 4, ...... ,A
Clearly indicates that each successive area approximates
more closely to that of a circle.

NTY)

FIGURE 1.3

Based on above discussion we can define the limit
of a function f{x) when x — a as the real number towards
which the value of function tends to approach when we
approach x from left-hand side or right-hand side. So you
must not confuse it with value of function at x = a. When x
is approaching nearer and nearer to ‘a’ (i.e. x can be taken
to as much close to ‘a’ as we wish), then we say that x is in
neighborhood of ‘a’ and at that instant f{x) is approaching
to a real number I(say) is called limit of function. Let us
study limit of a function starting from very beginning i.e.
neighborhood of a point ‘a’

Neighbourhood of Point ‘a’

An open interval (a — 3, a + 8); where & > 0 is called a
neighbourhood of the point ‘a’. It is denoted by N(a, 8) and
called as 6 — neighbourhood of point ‘a’ here ‘8’ specifies
the radius of neighbourhood N(a, 8), and ‘a’ is known as its
centre for any real number x € N(a, 8),& x € (a—93,a + )

< 3 I 3 >
a3 a a+d
N(a, 8)
FIGURE 1.4

= a-06<x<ag+d
= 8<x-a<$b
= 0<|x—q|<d

Thus a real number x belongs to §-neighbourhood of
‘a’ if and only if 0 < |x — a| < § i.e., distance of x from ‘a’ is
lesser than & (may be zero) e.g., the function flx) =

S S has its domain (2, 3) = (2_1,24_1]
(-2)G-0)

which is 1/2-neighbourhood of 5/2 i.e., neighbourhood
having its centre at 5/2 and radius = 1/2.

Deleted Neighbourhood of a Point a

If the real number ‘a’ is removed from the neighbour-
hood N(a,d) of ‘a’ then it is called a deleted neighbour-
hood of ‘a’. Thus (a — 8, a) U (a, a + d) is called deleted
neighbourhood of ‘a’.
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For any real (@ — d, o + &) number x belonging to deleted
neighbourhood of ‘a’we have x € (a -9, a) U (a, a + )

:: S } )

‘_",_0 Yy
o

a—d a
N(a, &)~{a}

FIGURE 1.5
= a-0<x<ag+dandx#a
= 0<x—a<dbandx—a=0
= 0<|x—a|<3
Thus a real number x belongs to & — deleted
neighbourhood of ‘@’ if and only if 0 < |x-a| < 3, i.e.,
distance of x from a is lesser than 3 but not equal to zero.

~ 1
“& ) ) (a—x) (x-3)

{3} =(2,3)u(3,4), ie, deleted neighbourhood of 3

has its domain (2, 4) ~

having radius ‘1°, here a = 3,0 = 1.
Left Deleted Neighbourhood of‘a’

The set {x:a—3,<x<a)iscalled left deleted neighbourhood
of a. Thus (a — 8,a) is left deleted neighbourhood of ‘a’.

REMARKS:

Thus ifareal number x belongs to left deleted neighbourhood
of ‘a’, then x is less than ‘a’ and distance of x from a is less

1
(x-2)(4-x)
domain (2,4) which is left deleted neighbourhood of 4,
having its radius ‘2.

than 8. e.g., the function flx) = has its

—— 5 ——>

a—d ;

FIGURE 1.6

Right Deleted Neighbourhood of ‘a’

The set {x : a < x < a + &} is called right deleted
neighbourhood of a. Thus if a real number x belongs to right
deleted neighbourhood of ‘a’, then x is greater than ‘a’ and
its distance from ‘a’ is less than 8. For example the function
Six) =log (x — 1) (2 — x) has its domain (1, 2) which is right
deleted neighbourhood of 1, having its radius 1.

fe— § ——>!
a a+d

FIGURE 1.7

If domain of a function f(x) is (a, b); then we can write (a, b) as

b) (b- b) (b- b
(i) (((H )—( a)l(a+ )+( Za)) Which is the neighbourhood of % having radius

2 2 2

(b-a)
2

(i) (b-(b-a), b) which is left deleted neighbourhood of b having radius (b - a)
(i) (a, a + (b-a)) which is right deleted neighbourhood of a having radius (b - a). e.g., If f(x) = log (x - 2) (4 — x), then

domain of f(x) = D,= (2, 4) which may be defined as
(i) Neighbourhood of 3 having radius 1

(i) Left deleted neighbourhood of 4 with radius 2

(iii) Right deleted neighbourhood of 2 with radius 2

Meaning of ‘’x — a’ (x tends to a)

X — a (x tends to a) means x is approaching nearer and
nearer to ‘a’ but is never equal to ‘a@’. x — a does not predict
about the way in which x is approaching to ‘a’ i.e., from
left side of ‘a’ or from right side of ‘a’. Thus depending
on the way in which x is approaching to ‘a’ we define the
following two symbols:

(a) x — a:(xtends to a from negative side)

Means x is approaching to ‘a’ from negative side (left side).
Here x is approaching to ‘a’ by taking the increasing values
from left deleted neighbourhood of ‘a’ i.e., x € (a — 9, a)
and every value of x is greater than its previous value e.g.,
x — 2 implies x takes values like 1.991, 1.992, 1.994,
1.998, 1.99901, and so on but x < 2 (always).



(b) x — a*: (xtends to a from positive side)

Means x is approaching to ‘a’ from positive side (right side).
Here x is approaching to ‘a’ by taking the decreasing values

REMARKS:

(i) x—> aisequivalenttox=axh;h—0*
(ii) x> a isequivalenttox=a-h;h— 0*
(iii) x— a*isequivalenttox=a+h;h—0*

m LIMIT OF A FUNCTION

Limit of a function at x = a is tendency of the value output
of the function f(x) as x gets its values nearer and nearer to
a. Limit of a function can be discussed for the following
two cases.

Casel: Limit of a function f(x) at a real finite
number‘x=a’

A real number ‘ £ is said to be the limit of a function f{x) as

x tends to a if the value f{x) is approaching closer & closer
to /as x is approaching nearer and nearer to ‘a’. We can

take f{x), as much nearer to ¢ as we please by taking x suf-

ficiently close to ‘a’.

FIGURE 1.8

The above statement can be represented symbolically
as flx) = £as x — a and we write lim f(x) =/ and read as

“Limit of f{x) is £ as x tends to ‘a’.
Note that lim f (x) =/ means f(x) has the tendency to

approach fas x tends to ‘a’. It does not ensure that
fla) = {.i.e., fla) may or may not be equal to ¢

The Limit of a Function < 1.5
from right deleted neighbourhood of ‘a’ i.e., x € (a, a + )
and every value of x is lesser than its previous value e.g.,
x — 2 *implies x takes value like 2.106, 2.102, 2.092, 2.065,
2.008 and so on but x always remains larger than 2.(x > 2).

e.g. 1. If flx) = x* Consider the following tables repre-
senting the values of f{x) as x is approaching nearer
and nearer to 2.

x(x—27)| 19| 191 | 1.94 | 1.98 | 1.99 | 1.995 1.998
fx) [3.61|3.6481|3.7636(3.9204(3.9601|3.980025|3.992004

2.05
4.2025

2.04
4.1616

2.02
4.0804

2.01
4.0401

2.005
4.020025

x(x—2%)
&)
The first one table shows that as x approaches nearer

and nearer to 2 from left side, f{x) is approaching nearer
and nearer to 4 from left side i.e., f{x) >4 -asx —> 2~.

The second table shows that as x approaches nearer
and nearer to 2 from right side f{x) is approaching
nearer and nearer to 4 from right side i.e., f{x) > 4* as
x— 2%

Thus overall we conclude and say that f{x) >4 asx —
2.1e, }cl_r)rzlf(x) =4 (Herea=2, { =4).

Graphically,

FIGURE 1.9

-9  (x-3)(x+3)

3 (-9)

eg 2. Iffilx)=

=(x+3)
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[as x — 3 implies (x — 3) is non-zero and hence this

factor can be cancelled out]

Consider the following tables representing the values
of f{x) as x is approaching nearer and nearer to 3

x(x—>3) | 2.9 [ 291|292 | 293|294 | 2.98....
Sx) 59 | 591592 | 593|594 | 598....
x(x—>3%) | 3.05 | 3.04 [ 3.03 | 3.02 | 3.01 | 3.004...
Sx) 6.05 | 6.04 | 6.03]6.02 | 6.01 | 6.004...

The first table shows that as x is approaching nearer
and nearer to 3 from left side f{x) is getting loser and
closer to 6 from left side, i.e., {x) &> 6 asx —> 3-. The
second table shows that as x is approaching nearer and
nearer to 3 from right side, f{x) is approaching nearer
and nearer to 6 from right side i.e., f{x) > 6 *asx — 3*

REMARKS:

Thus overall, we can say flx) > 6 as x — 3. i.e,
im ()6
Graphically:

| Noy=f(x)= (":_‘f)

(not defined at x=3)
or y=(x+3); (xeR~{3})

FIGURE 1.10

1. In example (1) 11_13 f(x)=4 and also f(2) = 4, whereas in example (2) £1_13 f(x)=6 but f(3) # 6, thus limit of a

function f(x) equal to ¢ may or may not be equal to value f(a) as x tends ‘a’ does not ensure f(a) = ¢

2. Conversely iff(a) = ¢, then is it necessary that lim f (x)=12

—;x#3 . .
The answer is no. For support consider the function f(x) = { x-3 ’ ¥ Here lim f (x)=1lim

2_
x =9 R

-3 x-=3

=6

5 ;x=3

(As discussed earlier) and f(3) = 5. Thus f(3) = 5 but lim f (x)#5

3. For the functions having their graphs continuous i.e., without having any break across ‘a; if li_l)n f(x)=¢, then

fla) = £ and conversely if f(a) = £, then lim f (x)=¢.

Case lI: Limit of a function f(x) at infinity

(Limit at infinity)

A real number ‘¢’ is said to be the limit of a function f{x) at
infinity if f{x) tends to ¢ as x tends to infinity (+o0 or —c0),
i.e., f{x) can be made as much close to £ as we please by

making x sufficiently large in magnitude.

y

A

/ 6]

y!

FIGURE 1.11

> X

f(x) has limit 7 at oo, i.e.,
lim f(x)=¢

>

Z

> X
O| f(x) has limit ¢ at —x, i.e.,

lim f(x)=¢

y! X— —00

FIGURE 1.12

Illustration: Prove the following and hence draw their
graph

@) 1im(1-l] =1
X—>0 x



(i)

(iii)

since by increasing the values of x its reciprocal 1/x
decrease thus

1
Asx—>D> o= ——>0
X

1
1-— —1. Graphically, it is shown in figure 1.13
X

FIGURE 1.13

lime™* =1

X—>0

when x increases from zero to infinity the reciprocal
1/x decreases from oo to zero (but takes +ve values)
thus —1/x increases —o to zero taking all possible neg-
ative real values

1 -1
ie,x >, ——>0"——>0 = e o1
x X
Graphically, it is as shown below
y
A
X' > X
O
y/

FIGURE 1.14

. 1
lim sin—=0
x—>too X

1 1
Asx >0, ——>0" = sin——>0"
x x

11
As x takes values in [—;,;] ~{0} the reciprocal
function le(—oo,—;r]u[;r,oo) therefore sin 1/x at-
X

tains its all possible values infinitely many times as

The Limit of a Function < 1.7

the range of 1/x consists of infinite periodic intervals
of sine function.

And As x > —00,l -0 :>sinl—>0‘
X pe

Geometrically it is shown in figure 1.15

1

2/n -1n 0.4
-00 < —02-0104 02 1/ 0”6\ > 0
-0.6 Tu. 2/n
y=sin17
-1
FIGURE 1.15

Why Limit of a Function is Needed?

There are some functions f{x) whose values can’t be deter-
mined at some real numbers (say at x = ‘a'). For example

@) f(x)=8i%atx=0,
(ii) f(x)=|z:§|atx=2,
(iif) f(x)=x__2 atx =2,

@iv) f(x)=xsin% atx =0

1 1
v f(x)=———— atx=0etc.
x sinx

These functions are not defined at indicated points. However
we can predict the values of real numbers (£) to which these
functions tend when x tends to indicated points, through the
knowledge of limit i.e., ll_r’r‘} f(x)=2. We can find limit of

a function at a point only when the limit is in “indeterminate
form” as discussed in the next section.

B INDETERMINATE FORMS

Some times, we come across functions which do not have
definite value corresponding to some particular value of the
independent variable. (If by substituting x = a in any func-

. . 0 o
tion f{x), it takes up any one of form Ve 0 x o0, 00 — 00,
e ]
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1=, 0°, oo®, then the limit of function f(x) as x — a is called
indeterminate form.) There are two basic indeterminate

forms (%,2) and all the other forms can be converted to
o0

these two basic forms. In such cases, value of function at x
= q does not exist while li_t)n f(x) may exist.

@ f(x)=E22

-
£i_r}31x -3=0.So £1_1)131 f(x) is called an indeterminate

Here limx*-9=0 and
x—3

form of type —.

REMARK:

(b)

(c)
d)

(e

®

. Inx . . . ®
lim— is an indeterminate form of type — .
x>0 x o0}

lirr(} (1+x)"* is an indeterminate form of type 1=.
x>

lirr(}(sin x)* is of indeterminate form (0)°

limxsinlisofooxoform
X—>00 X

liml— is of oo — oo form

=0 x tanx

Ifa given limit is not of indeterminate form and the function is not defined at x = 0, we can’t find it e.g., lim(sin x)"x;
x—=0

Vx
. (1 . X
Ilm(—] lim[In| x|]"* are not defined.
x-0\ x X0

REMARKS:

(i) ‘0’doesn’t mean exact zero but represents a value approaching towards zero similary to ‘1’ and infinity.

(ii) o+o0o=0
(i) coxo0=00
(iv) (a/c) =0ifais finite

v) % is not defined for any a < R.

(vi) ab=0,if&onlyifa=00rb=0anda, b are finite i.e,, 0 x finite =0



Left-hand Limit of Function

A real number ‘7’ is said to be left-hand limit of a function
Jfx), if fx) is approaching nearer and nearer to £, if x is
approaching nearer and nearer to ‘a’ from left side of ‘a’i.e
x belongs to each left deleted neighbourhood of ‘a’.
Symbolically we write fla) = ¢, and left-hand limit is
expressed as ,}LI? f(x) = ¢, left-hand limit is abbreviated

as LH.L. Thus LHL = lim f(x)=1/.

Geometrically, it is as shown below :
(i) (Function without any break and L.H.L = /, at
x=aandfla) =1).

y
A
f(a)=r, 4/
4
/\/ "
o) "% a X
FIGURE 1.16

(ii) Function with break and L.HL = £ at x = a and
fay=1,.

y
4
1 ) e /
. :
: 44:;
/\/1 |
o "x a T X

FIGURE 1.17

(iii) Function with break at x = a, LH.L =/ atx = a
and fla) = £,.

y
A /
L) o A :
1 442
/\/ i
o TR
FIGURE 1.18

The Limit of a Function < 1.9

(iv) Function with break atx = a, LHL =/ atx =a
and fla) # £,

y
f(?;) ------------------------------- /
4
/\_/14
o & T
FIGURE 1.19

Example:
@ fx)=@-1)*a=1,then
LHL = lirf}(x— 1)3 =0, as x is approaching nearer

and nearer to 1 from left side (x — 1) is approaching
nearer and nearer to 0 from negative side i.e.,
x-1P¥<0and(x— 1> 0ie,(x—1 >0

@ii) flx) = [(x — 1)’]; @ = 1; where [.] is gint. function,

then
LHL = [ (0] = i [ (1))
= lim [y3:| =_1
y—0

As(y 20 =)' 50 =-1<y’ <0=>[y']1=-1)

(i) fx)= ——=sa=2,
|x—2]
then L.HL = lim (x— )=lim (x—2) =-1
x—>2'|x—2| x—>2'—(x_2)
x> 27
=x<2andx > 2
=>x-2<0
=|x-2|=—(x-2)and# 0

.1 o1
(iv) fix)= sin—;a=0;then LHL = llrg sin— would
X x> x
1
not exist, as x - 0 — — —0 and sin 0 being an oscil-
x

. . L1 )
lating function, sin— could not approach to a particu-
x

lar real number and oscillates in between —1 and 1

. o1
) fx)= [xsm2 —];a =0;[.] gint function, then L.H.L
x

= lim [x sin’ l} =
x—=0" X
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[(a number approaching to 0) from left side) x (a num-
ber oscillating between 0 and 1 includingly)] =-1

Right-hand Limit of a Function

Areal number °Z,” is said to be right-hand limit of a function
Sfx) if fix) is approaching nearer and nearer to £, as x is
approaching nearer and nearer to ‘a’ from right side of ‘a’
i.e., x belongs to each right deleted neighbourhood of ‘a’.
Symbolically we write fla *) = £, and it is expressed as

lim f (x) = £,. Right-hand limit is abbreviated as R.H.L.

Thus RHL = lim f(x)=1,. Geometrically, it is as

shown below
(i) Function without any break and RH.L = /, at
x =aandfla) = ¢,

f(a)=t,

> X
o a x

FIGURE 1.20

(ii) Function with break at x = @ and RH.L = /, at
x=aandfla) # £,

f(a)=r

2

‘(<<

(6] a X

FIGURE 1.21

(iii) Function with break at x = @ and RH.L = [ at
x=agand RH.L =/,atx =qand fla) # £,

FIGURE 1.22

(iv) Function with break at x =
x=aandfla)# /¢, eg.,

a, RHL = £, at

"2

f(a)

A

@) a X

FIGURE 1.23
1. ix)=x*-1;a=1,
. o s\
then ll_lggf(x)—!gg(x l) 0
Asx—> 1, ¥ >1"=2x*-1-0"
2. flx) =[(1 —x)*]; a = 1; where [.] is gint function
. . 3 3
then ll_tjlf(x)—}l_gl I:(l—x) ]— [—(x—l) :I

= lim[—y3:|=—1as y—=0"=-y' 50

y-0*+

lim
(x=1)>0"

=>-1<-y' <0=[-y']=-1
x=2

3. f(X)=m;a=2

. B x=2 (x—2)_
Then fim f (x) = lim = o)~

Asx—>2" 2x-2>0=>[x—-2|=x-2+#0)

. ( 1)
lim | sin—
x—0" X

1 1
= — —> o= sin— oscillates in between —1 and 1)
X X

.1 .
4. fix) = sin—;a=0; then llrg}f(x) =
X x>

does not existasx — 0~

!
5. f (x)=[xsm2 —};a =0; [.] is gint function, then
x

lim f(x)=lim [x sin® 1] =

x—0" x—0" X

[(@a number approaching 0 from right side) x
(a number oscillating between 0 and 1)] =[0"]=0

Procedure to find one sided limit of a function

1. To evaluate left-hand limit of a function, we substitute
x = a — h and take the limith — 0*

ie, lim f(x)= hlll’gl f(a-h)
x-2

c.g., forf(x) = |x—_2|;



-2 2-h-2
tim £ (x) = tim 572 g { )
52 x—>2'|x—2| h—>0*|2—h—2|
—h —h
= limu= limu=—1
h—0* | —h | N )
(vh>0=2h>0=>-h<0=|-h =h)
2. To evaluate right-hand limit of a function, we substi-
tute x = a + h and take the limit A — 0~

ie, lim f(x)= lim f(a+h)

{x-2}

;{x}is fractional part of x;
|2—-x]

lim £(x) = lim 2rh-2y W B
o7 w0 | 2—(2+R)| o0 |<h| &

(- 0<h<1= {h} =hand—h<0=|-h| = h)

e.g., for flx) =

Existence of limit of a function

The limit of a function at x = a, is said to exist if
(i) lim f(x) = lim f(x) =1
(ii) ¢ is a finite real number

i.e., Left-hand limit and right-hand limit of function exist,
equal and they are equal to finite real number. Thus exist-
ence of limit of a function at x = a means “As x tends to ‘@’
from either way (from left or right) f{x) tends to a unique
finite (real number).

Geometrically it is as shown below

y

f(a)=v

< << X

[e) X a X

FIGURE 1.24

Function without any break atx =a and LHL =R.H.L
={latx=a,fla)="/

FIGURE 1.25

The Limit ofa Function < 1.11

Function having a break at x = ¢, LH.L = RH.L =
L #fla)

Reason for non-existence of limit of a function

Any one of the following may be the reason for non-exist-
ence of limit of a function.

(i) Any one or both L.H.L and R.H.L do not exist
(ii) Both L.H.L and R.H.L exist but are unequal
(iii) f{x) oscillates with large frequency near the point x = a

The following graphs illustrate the reasons for non-exist-
ence of limits:

(i) (L.H.L and R.H.L. exist but are not equal, x)

FIGURE 1.26

(ii) One of the L.H.L. and R.H.L. exist finitely and
other in infinitely.

y
3
LHL =
TR ()] F— (does not exist)
RH.L.=¢,
o] a > X
y

¢,=f(a)

(0] a

FIGURE 1.27
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(i) Both L.H.L. and R.H.L. are infinite

y
A
o0 " o0
| LHL =w=RHL.
¢,=f(a) i \ i.e., both does not
io\exist
0 a ¥
y
A o
LHL =
RH.L =—-w
X' 0 a —> X
w0
yl
y
A )
X0 a
.|
y
y
A
X% a
, —o0! —o0
y

FIGURE 1.28

(iv) When the function is oscillating

y
A
~As x—a
i f(x) oscillates
with high
i frequency
X' 0 5 > X
y!
y
f(x) = sin(%)
As x—0, f(x) oscillates
in between —1 and 1
X' > X
y
FIGURE 1.29
For example:
x-3 .x-3
i) ix) = ———; LHL = lim =-1 and
@ 0 | x=3| =3 | x—3]|
. x=3
RH.L = lim =1
x—>3* | x=3 |

LHL=-RHL
Limit does not exist, inspite L.H.L and R.H.L
exists separately.

(i) f(x)=$;a=ﬂ; then
M S ()= i iy = o0
fim £ (5)= i s =
L.H.L and R.H.L does not exist

(iii) f{x)=|tanx|; a = 7/2, then
LHL = lim f(x)= lim |tanx|=coand
x—)% x—)%

RHL = lim f(x)= lim |tanx|= oo

x> x>
2 2

L.H.L and R.H.L does not exist, however both are
infinite.
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1 is equal to — 1. Thus we in this case say limit exists
@iv) fix)= m ; a = 1, where [.] is gint function. Then and is equal to —1.

LH.L = {
lim f(x) =lim 1 = lin} ! = lim+ ! No portion
xo1 xol [x—l] h—>0 I:(l—h)—l:l h—>0 [—h] of graph

11 -

y=1/2
=L 1(-1<-h<0) Ui
(-1) -
. . . : o 1 2 3 4

Here domain of f{x) is R ~ [1, 2). Since f{x) is not
defined in [1,2), thus we need not to find R.H.L of f{x) -1
atx =1 and 1,(1211 fx) is considered to be }1-?11 flx) and FIGURE 1.30

REMARKS:

1. If limit of a function f(x) is to be determined at x = a first of all make sure that the function f(x) is defined in left
deleted neighbourhood (a-5, a) and right deleted neighbourhood (a, a + §). If f(x) is defined in (a - 3, a) and is
not defined in (a, a + d), then left-hand limit is taken as the value of given limit. Similarly if f(x) is not defined in
(a-8, a) and is defined in (a, a + 3), then right-hand limit is taken as the value of given limit. For example

1
M f(x)= m ; ([x]is gint function) is defined in (1 -, 1); 8 > 0 but not defined in [1,1+ 5),0 <3 <1
lim £ (¥) = lim £ (x) =1
(i) f(x) =sin"'x;a=1,
then f(x) is defined in [1 -5, 1];0<8<2
but f(x) is not defined in (1,1 + §); 8 >0
. . . .- T
Thus lxl_I)Illf(x)=}1_£111_f(x)=)lgll‘lsm lx=5
2, IfLH.L =RH.L = or-x, then we say that limit does not exist. It means the limit does not exist finitely, i.e, there is
no real finite number to which f(x) tends as x tends to a. In this case we say”limits exists infinitely/”

3. Infinite Limits: If f(x) tends to « (or - ) as x — a (or x), then the limit is called infinite limit. Thus we can make f(x)
as much large in magnitude as we please by making x sufficiently close to a.

4. By li_l’n f(x) we mean x takes values closer and closer to ‘a’ without being equal a.

5. Itis evident from the definition that in order to find the limit of f(x) at x = g, the first thing is that f(x) should be well
defined in the neighbourhood of x = a and not necessarily at x = a (that means x = a may or may not be in the
domain of f(x)), because we have to examine its behaviour or tendency in the neighbourhood of x = a.

y

A

FIGURE 1.31
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6. If lim f(x)# lim f(x), then limit does not existatx=a

7. IfR.H.L =LH.L = o, then limit is said to exist infinitely.

(

ILLUSTRATION 4: Evaluate the following one sided limits:

lim 221
() x—>2*(x 2)

(i) %[x],[] is gint function
) lim_ [cotx] .
(i) lim [cotx]
x-2
7 (x-2)”

L x—2>0 k-2 =x

SOLUTION: (i) hm ;Asx 92V x>2

(ii) hm| — | ;Asx > 2 =>x<2

-2 x—2°
= x-2<0
-2, ~(=2) _
x—2" (x 2) x—)2 (x 2)
(iii) h_{g}[x],Asx—)T‘

= 3<x<4
lim [x]=3

x-3

(iv) ligg[x] ;Asx — 3

= 2<x<3
lim [x]=2

X3

) lim_[cotx]; Asx— (—%J_

2| -Z
4

= x<-n/4

0>cotx>—1
. [eotx]=-1
lim [cotx]=-1

)

(vi) lim_[cotx]; Asx — (—%)

N
s

T . . .
= cot x> cot (—Z] as cot x is a decreasing function

o (x-2
@ o)

(iv) hm[x],[] is gint function
(vi) lim [cotx]

x—>-n/4*

(viii) lim [log x]

x—10"

=2 _ i G2
Ly P R T Py

= k-2=-(x-2)

L [x]=

L [x]=

- —n/ZRQ Ly \

FIGURE 1.32

= x> -2
> -Z
4
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= cot x < cot (—n/4)
[cot x]=-2

(vii) l_i)rll(‘)l_[logx] ;Asx — 10-

= 9<x<10
= 1<x<10
As log,x is an increasing function

U

log,, 1 <log,x <log, 10
O<logx<1
[logx]1=10

lim [logx]=0

x—10"

Uy

(viii) lim [logx]; Asx — 10+

ILLUSTRATION 5:

SOLUTION:

x—-10*
. x> 10 but x is nearer to 10
log,,10 < log,, x <log,, 100

[log x]=1

Evaluate the following one sided limit:

~

= —2<cotx<-1
lim [cotx]=-2

N
7

FIGURE 1.33

s 10<x <100
= I<logx<2
lim [logx]=1

x-10*

@ lim | [x=2]I; []is greatest integer function

@) lim{x-2};{} is fractional part of x

x—>3

. . (x2 —4)
(iii) hnzu_ sin ;[.] is greatest integer function

(x+2)

@(iv) lim {tan(xz =

x3 x+3

9}} ; {.} is fractional part of x

(v) lm {cos (x—_7z'/2)} ;{.} is fractional part of x

x2—x*14

x-0*

@ lim|[x-2]|;Asx<2andx»>2=1<x<2

= -1<x-2<0
= |[x-2]=1

(iii) lilg}{x-Z};Asx—>3+=>3<x<4
x>

= 1<x-2<2
= (x-2)=1+{x-2}
lim {x~2} = lim (x~3)=0

x—3*

= [x-2]=-1

= x-2)=[x-2]+{x-2}
= {x-2}=(x-2)-1=x-3

(iii) lim[sin(%)] = lim[sin(x-2)] [ x>2=>x+2%0]

x—>2" -2

= lim sin(2-4~2)] = lim[sin(~#)] =

h—>0*

lim [-sinh]=[k] ; (where — 1 <k < 0) =—1)

h—0"
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(
(iv) limJtan x' -9 = 1im{tan(x—3)}asx+3¢0
x3 x+3 x—3"
= lim {tan(3~h~3)} = lim {tan(~h)}
= }hg(l—{tanh}) (o {x}+ {-x}=1for xg¢Z =0 for x¢Z)
= lim (I-tank) (. 0<tanh<1 = {tanh} =tan k)
=1-0=1
. x—7/2 . 1 V3
(V) }L%{COS(m]} = }l_)%{COS(x-F”/Z]}[. x—5¢0:|
Asx > 0% x+(w2)—> n/2*
= ;_,(Z] :0<;<lradian
x+(7/2) V4 x+(7/2)
1 1 1
= 0O<cos <1=4cos =cos
x+m/2 x+m/2 x+m/2
lim < cos ch—_7z'2/2) =limcos( 1 )= cos(3
20" x*—-n‘/4 20" x+m/2 T
x2+1 ;x>1 )
ILLUSTRATION 6: If f{x) = , then find the value of lim f(x).
3x-1;x<1 1
SOLUTION: LHL= lim f(x)=lim3x-1) =3(1)-1=2
RHL = lim f(x)=lim (x> +1) =12+ 1=2
x-1* x-1*
. LHL =RHL = limit of f{x) as x — 1 exists and is equal to 2
_|x2 1 ;x#1
ILLUSTRATION 7: Simplify fx) =< x-1 ’ , and test the existence of its limit at x = 1 and — 1.
0 ;x=1
x+1 ; x<-1
. . —(x+1) ; -1<x<l1
SOLUTION: Simplifying the above function, we get f(x) = 0 el
x+1 ; x>1
(i) atx = 1; Clearly L.H.L at x = 1 is —2 while R.H.L = 2, so !'111)11 f(x) does not exist.
(ii) atx=—1; LHL=RHL =0 (atx =-1) so }1_1’1_11 f(x) exists and it is equal, to zero.
1/x
ILLUSTRATION 8: Show that M(el,—J does not exist.
=0l e +1
. . |
SOLUTION: Given function is f(x) = T
e+
. . el /et -1 0-1
LHL= P—gl 7@ = y-%f(o_h)_y—%e"”' +1 hl—%(l/e”" +) 0+1






